Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Anal Chem ; 96(12): 4764-4773, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484023

RESUMO

Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Minerais , Sequência de Aminoácidos , Peptídeos , Anticorpos , Biomarcadores
2.
Sci Adv ; 10(12): eadl0849, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517965

RESUMO

Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Gelo , Exobiologia/métodos , Oceanos e Mares
3.
Astrobiology ; 24(3): 283-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377582

RESUMO

Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Exobiologia/métodos , Planetas , Planeta Terra , Oxigênio
4.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227837

RESUMO

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Assuntos
Júpiter , Marte , Saturno , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos
5.
Astrobiology ; 24(1): 1-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150549

RESUMO

Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Ácidos Graxos/análise , Ácidos Carboxílicos , Hidrocarbonetos Acíclicos , Meio Ambiente Extraterreno
6.
Astrobiology ; 23(12): 1245-1258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054949

RESUMO

With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.


Assuntos
Exobiologia , Marte , Humanos , Exobiologia/métodos , Meio Ambiente Extraterreno , Poeira
7.
Astrobiology ; 23(12): 1337-1347, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38079231

RESUMO

The highly compact Linear Ion Trap Mass Spectrometer (LITMS), developed at NASA Goddard Space Flight Center, combines Mars-ambient laser desorption-mass spectrometry (LD-MS) and pyrolysis-gas chromatography-mass spectrometry (GC-MS) through a single, miniaturized linear ion trap mass analyzer. The LITMS instrument is based on the Mars Organic Molecule Analyser (MOMA) investigation developed for the European Space Agency's ExoMars Rover Mission with further enhanced analytical features such as dual polarity ion detection and a dual frequency RF (radio frequency) power supply allowing for an increased mass range. The LITMS brassboard prototype underwent an extensive repackaging effort to produce a highly compact system for terrestrial field testing, allowing for molecular sample analysis in rugged planetary analog environments outside the laboratory. The LITMS instrument was successfully field tested in the Mars analog environment of the Atacama Desert in 2019 as part of the Atacama Rover Astrobiology Drilling Studies (ARADS) project, providing the first in situ planetary analog analysis for a high-fidelity, flight-like ion trap mass spectrometer. LITMS continued to serve as a laboratory tool for continued analysis of natural Atacama samples provided by the subsequent 2019 ARADS final field campaign.


Assuntos
Marte , Voo Espacial , Exobiologia/métodos , Espectrometria de Massas , Cromatografia Gasosa-Espectrometria de Massas/métodos
8.
Astrobiology ; 23(12): 1303-1336, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133823

RESUMO

In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.


Assuntos
Cianobactérias , Marte , Robótica , Humanos , Exobiologia/métodos , Trifosfato de Adenosina , Biomarcadores/análise , Meio Ambiente Extraterreno
9.
Astrobiology ; 23(12): 1259-1283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930382

RESUMO

The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.


Assuntos
Cianobactérias , Marte , Raios Ultravioleta , Exobiologia/métodos , Anticorpos , Biomarcadores/análise , Clima Desértico
13.
Astrobiology ; 23(10): 1099-1117, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37768711

RESUMO

We present a comparative study of the methods used in the search for extraterrestrial microorganism life, including a summary table where different life-detection techniques can be easily compared as an aid to mission and instrument design aimed at life detection. This is an extension of previous study, where detection techniques for a series of target characteristics and molecules that could constitute a positive life detection were evaluated. This comparison has been extended with a particular consideration to sources of false positives, the causes of negative detection, the results of detection techniques when presented regarding terrestrial life, and additional science objectives that could be achieved outside the primary aim of detecting life. These additions address both the scientific and programmatic side of exploration mission design, where a successful proposal must demonstrate probable outcomes and be able to return valuable results even if no life is found. The applicability of the life detection techniques is considered for Earth life, Earth-independent life (life emerging independently from that on Earth,) and Earth-kin life (sharing a common ancestor with life on Earth), and techniques effective in detecting Earth life should also be useful in the detection of Earth-kin life. However, their applicability is not guaranteed for Earth-independent life. As found in our previous study, there exists no realistic single detection method that can conclusively determine the discovery of extraterrestrial life, and no method is superior to all others. In this study, we further consider combinations of detection techniques and identify imaging as a valuable addition to molecule detection methods, even in cases where there is insufficient resolution to observe the detailed morphology of a microbial cell. The search for extraterrestrial life is further divided into a survey-and-detection and analysis-and-conclusion step. These steps benefit from different detection techniques, but imaging is necessary for both parts.


Assuntos
Marte , Voo Espacial , Exobiologia/métodos , Meio Ambiente Extraterreno , Sistema Solar , Planeta Terra
15.
Sci Rep ; 13(1): 12663, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542097

RESUMO

Essential insights on the characterization and quality of a detectable biosphere are gained by analyzing the effects of its environmental parameters. We compiled environmental and biological properties of the Phanerozoic Eon from various published data sets and conducted a correlation analysis to assess variations in parameters relevant to the habitability of Earth's biosphere. We showed that environmental parameters such as oxygen, global average surface temperatures, runoff rates and carbon dioxide are interrelated and play a key role in the changes of biomass and biodiversity. We showed that there were several periods with a highly thriving biosphere, with one even surpassing present day biodiversity and biomass. Those periods were characterized by increased oxygen levels and global runoff rates, as well as moderate global average surface temperatures, as long as no large or rapid positive and/or negative temperature excursions occurred. High oxygen contents are diagnostic of biomass production by continental plant life. We find that exceptionally high oxygen levels can at least in one instance compensate for decreased relative humidities, providing an even more habitable environment compared to today. Beyond Earth, these results will help us to understand how environmental parameters affect biospheres on extrasolar planets and guide us in our search for extraterrestrial life.


Assuntos
Clima , Meio Ambiente Extraterreno , Planetas , Exobiologia/métodos , Oxigênio/análise
16.
Astrobiology ; 23(10): 1118-1127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523279

RESUMO

An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Meio Ambiente Extraterreno/química , Exobiologia/métodos , Catálise
17.
Astrobiology ; 23(6): 691-704, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126783

RESUMO

The Mars Multispectral Imager for Subsurface Studies (Ma_MISS) instrument is a miniaturized visible and near-infrared spectrometer that is integrated into the drilling system of the ESA Rosalind Franklin rover, which is devoted to subsurface exploration on Mars. Ma_MISS will acquire spectral data on the Martian subsurface from excavated borehole walls. The spectral data collected by Ma_MISS on unexposed rocks will be crucial for determination of the composition of subsurface rocks and optical and physical properties of materials (i.e., grain size). Ma_MISS will further contribute to a reconstruction of the stratigraphic column and acquire data on subsurface geological processes. Ma_MISS data may also inform with regard to the presence of potential biomarkers in the subsurface, given the presence of organic matter that may affect some spectral parameters. In this framework, we performed a wide range of measurements using the laboratory model of the Ma_MISS to investigate mineral/organic mixtures in different proportions. We prepared mixtures by combining kaolinite and nontronite with glycine, asphaltite, polyoxymethylene, and benzoic acid. These organic compounds show different spectral characteristics in the visible and near-infrared; therefore their presence can be detected by the Ma_MISS instrument. Our results indicate that the Ma_MISS instrument can detect organic material down to abundances of around 1 wt %. In particular, the data collected on low-concentration mixtures show that, by analyzing sediments with a grain size smaller than the Ma_MISS spatial resolution, the instrument can still discern those points where organic matter is present from points with exclusive mineral composition. The results also show that a collection of multiple contiguous measurements on a hypothetical borehole wall could help indicate the presence of organic matter in clay-rich soils if present.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia/métodos , Minerais , Fenômenos Geológicos
18.
Astrobiology ; 23(7): 769-785, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222732

RESUMO

Benefiting from their adaptability to extreme environments, subsurface microorganisms have been discovered in sedimentary and igneous rock environments on Earth and have been advocated as candidates in the search for extraterrestrial life. In this article, we study iron-mineralized microstructures in calcite-filled veins within basaltic pillows of the late Ladinian Fernazza group (Middle Triassic, 239 Ma) in Italy. These microstructures represent diverse morphologies, including filaments, globules, nodules, and micro-digitate stromatolites, which are similar to extant iron-oxidizing bacterial communities. In situ analyses including Raman spectroscopy have been used to investigate the morphological, elemental, mineralogical, and bond-vibrational modes of the microstructures. According to the Raman spectral parameters, iron minerals preserve heterogeneous ultrastructures and crystallinities, coinciding with the morphologies and precursor microbial activities. The degree of crystallinity usually represents a microscale gradient decreasing toward previously existing microbial cells, revealing a decline of mineralization due to microbial activities. This study provides an analog of possible rock-dwelling subsurface life on Mars or icy moons and advocates Raman spectroscopy as an efficient tool for in situ analyses. We put forward the concept that ultrastructural characteristics of minerals described by Raman spectral parameters corresponding to microscale morphologies could be employed as carbon-lean biosignatures in future space missions.


Assuntos
Ferro , Marte , Ferro/análise , Meio Ambiente Extraterreno/química , Silicatos , Minerais/análise , Exobiologia/métodos
19.
Astrobiology ; 23(6): 705-722, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115581

RESUMO

To date, several exoplanets have been found to orbit within the habitable zone of main sequence M stars (M dwarfs). These stars exhibit different levels of chromospheric activity that produces ultraviolet (UV) radiation. UV may be harmful to life, but it can also trigger reactions of prebiotic importance on the surface of a potentially habitable planet (PHP). We created a code to obtain the adenine yield for a known adenine synthesis route from diaminomaleonitrile (DAMN). We used computational methods to calculate the reaction coefficient rates (photolysis rate J and rate constant K) for the intermediate molecules DAMN, diaminofumaronitrile (DAFN), and 4-aminoimidazole-5-carbonitrile (AICN) of the adenine synthesis route. We used stellar UV sources and a mercury lamp to compare the theoretical results with experiments performed with lamps. The surface UV flux of planets in the habitable zone of two active M dwarfs (Proxima Centauri and AD Leonis) and the prebiotic Earth was calculated using the photochemical model ATMOS, considering a CO2-N2-H2O atmosphere. We obtained UV absorption coefficients for DAMN and DAFN and thermodynamic parameters that are useful for prebiotic chemistry studies. According to our results, experiments using UV lamps may underestimate the photolysis production of molecules of prebiotic importance. Our results indicate that photolysis reactions are fast with a yield of 50% of AICN in 10 s for the young Sun and ∼1 h for Proxima Centauri b. Planets around active M dwarfs may provide the most favorable environment for UV-mediated production of compounds relevant to the origins of life. The kinetic reaction AICN + HCN  adenine is the bottleneck of the pathway with reaction rates <10-22 L/(mol·s).


Assuntos
Meio Ambiente Extraterreno , Raios Ultravioleta , Meio Ambiente Extraterreno/química , Exobiologia/métodos , Planetas , Atmosfera/química
20.
Astrobiology ; 23(5): 477-495, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944138

RESUMO

Accurate interpretation of the martian sedimentary rock record-and by extension that planet's paleoenvironmental history and potential habitability-relies heavily on rover-based acquisition of textural and compositional data and researchers to properly interpret those data. However, the degree to which this type of remotely sensed information can be unambiguously resolved and accurately linked to geological processes in ancient sedimentary systems warrants further study. In this study, we characterize Mars-relevant siliciclastic-evaporite samples by traditional laboratory-based geological methods (thin section petrography, X-ray diffraction [XRD], backscattered electron imaging, microprobe chemical analyses) and remote sensing methods relevant to martian rover payloads (visible-near-mid infrared reflectance spectroscopy, X-ray fluorescence mapping, XRD). We assess each method's ability to resolve primary and secondary sedimentologic features necessary for the accurate interpretation of paleoenvironmental processes. While the most dominant textures and associated compositions (i.e., bedded gypsum evaporite) of the sample suite are readily identified by a combination of remote sensing techniques, equally important, although more subtle, components (i.e., interbedded windblown silt, meniscus cements) are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging reveal important features not readily detected using traditional assessments (i.e., subtle clay-organic associations, microscale diagenetic nodules). Our findings demonstrate the improved generational capacity of rovers to explore ancient sedimentary environments on Mars while also highlighting the complexities in extracting comprehensive paleoenvironmental information when limited to currently available rover-based techniques. Complete and accurate interpretation of ancient martian sedimentary environments, and by extension the habitability of those environments, likely requires sample return or in situ human exploration. Plain Language Summary Only when correctly translated can the ancient martian sedimentary rock record reveal the environmental evolution of the planet's surface through time. In this case study, we characterize Mars-relevant sedimentary rocks and evaluate the degree to which a comprehensive geological picture can be resolved unambiguously when limited to microscale remote sensing methods relevant to rovers on Mars. While the most dominant textural features and associated compositions of the sample suite are readily identified by a combination of remote sensing techniques, equally important but more subtle components are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging, such as Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument, reveal important features not readily detected by more traditional methods. We demonstrate that rovers have, generationally, improved in their capacity to resolve a true geological picture in ancient sedimentary environments, likely owing to an improved ability to coordinate spatially resolved compositional measurements with textural imaging at the microscale. However, our work also highlights the complexities involved in extracting subtle environmental information when limited to currently available rover-based techniques and suggests that comprehensive interpretation of ancient martian sedimentary systems likely requires sample return or in situ human exploration. Key Points Mars-relevant samples are characterized using both traditional laboratory and microscale rover-based remote sensing techniques to assess each method's ability to recognize features necessary for accurate paleoenvironmental process interpretation. While some key paleoenvironmental processes can reasonably be inferred via remote sensing methods, others cannot be resolved unambiguously. Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument reveals diagenetic features that would otherwise remain unseen by traditional thin section petrography.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Meio Ambiente Extraterreno/química , Exobiologia/métodos , Tecnologia de Sensoriamento Remoto , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...